Photons and Transport at NLO

with Jacopo Ghiglieri, Juhee Hong, Aleksi Kurkela, Egang Lu, Derek Teaney

• Photons: motivation and basics
• Convergence of Perturbation Theory
• When soft physics is light-cone physics
• When light-cone physics is thermodynamics
• NLO photon production: results, prospects
Stages of a Heavy Ion Collision

1. Ions collide, making $q, g, \text{photons}$ “primary”
2. q, g rescatter as QGP, make photons “thermal”?
3. Hadrons form, scatter, make photons “Hadronic”
4. Hadrons escape, some decay to photons “decay”

Photon re-interaction rare ($\alpha_{EM} \ll 1$): direct info.
Thermal photons \textit{may} act as a thermometer for QGP.
Production rate is interesting! Mostly for $E > 2$ GeV, several T.

XQCD, Bern, 4 Aug. 2013: Seite 2 von 25
How Photons Get Made

Since $\alpha_{\text{EM}} \ll 1$, work to lowest order in α_{EM}:

- assume photon production Poissonian

- neglect back-reaction on system cooling insignificant...

Single-photon production at $\mathcal{O}(\alpha_{\text{EM}})$

$$2k^0 \frac{d\text{Prob}}{d^3 k} = \sum_X \text{Tr} \rho U^\dagger(t) |X, \gamma(k)\rangle \langle X, \gamma(k)| U(t)$$

$U(t)$ time evolution operator, ρ density matrix.
Expand $U(t)$ in EM interaction picture:

$$U(t) = 1 - i \int^t dt' \int d^3 x \ eA^\mu(x, t') J_\mu(x, t') + O(e^2)$$

A^μ produces the photon. Get

$$\frac{d\text{Prob}}{d^3 k} = \frac{e^2}{2k^0} \int d^4 Y d^4 Z e^{-iK \cdot (Y - Z)} \sum_X \text{Tr} \rho J^\mu(Y)|X\rangle\langle X|J_\mu(Z)$$

And $\sum_X |X\rangle\langle X| = 1$. Assume slow-varying, near-equilibrium: $\int d^4 Z \to Vt$: Get rate per 4-volume:

$$\frac{d\Gamma}{d^3 k} = \frac{e^2}{2k^0} G^<(K), \ G^<(K) \equiv \int d^4 Y e^{-iK \cdot Y } \langle J^\mu(Y) J_\mu(0)\rangle_\rho$$

Success of Hydro – but not true at early times
Calculational Approaches

No first-principles, nonperturbative tool for $\langle J^\mu J_\mu \rangle(K)$. Only

- Lattice techniques (uncontrolled analytic continuation. Avoid)
- Weak-coupling techniques (uncontrolled extrapolation from $\alpha_s < 0.1$. Pursue)
- Strong-coupling $\mathcal{N}=4$ SYM (uncontrolled relation to QCD. Avoid)

How bad is weak coupling?

- It fails at $T \sim$ few T_C ?
- It fails at $T \sim 10^6 T_C$?
- It fails at all temperatures? Truth: some of each!
Lessons from the Pressure

Divide degrees of freedom in 2 groups: **Hard and Soft**

Naive order-by-order g-expansion

- Converges if $T > 10^6 T_C$
 - Arnold-Zhai, Braaten-Nieto, etc

Integrate out **Hard**, solve **Soft** nonperturbatively: 3-D theory!

- Works down to $T = 2 T_C$.
 - Kajantie et al, etc

Hard physics is perturbative. There is hope!

XQCD, Bern, 4 Aug. 2013: Seite 6 von 25
Perturbative treatment

We want \(G^<(K) \equiv \int d^4 Y e^{-iK \cdot Y} \langle J^\mu(Y) J_\mu(0) \rangle_\rho \)

\(J^\mu = \bar{\psi} \gamma^\mu \psi \). Correlator of two quarks. Something like
Perturbative treatment

We want

\[G^K(\mathcal{K}) \equiv \int d^4 Y e^{-i \mathcal{K} \cdot \mathcal{Y}} \langle J^\mu(Y) J_\mu(0) \rangle_\rho \]

\[J^\mu = \bar{\psi} \gamma^\mu \psi. \] Correlator of two quarks. In general,

Worse: dynamics complex, no nice effective 3D theory!

XQCD, Bern, 4 Aug. 2013: Seite 7 von 25
Start with Kinematics

\[
\gamma \text{ produc: } \sum_{\psi_f} \langle \psi_i | A^\mu \bar{\psi} \gamma_\mu \psi | \psi_f \rangle \langle \psi_f | A^\nu \bar{\psi} \gamma_\nu \psi | \psi_i \rangle
\]

In \(M \), \(\psi, \bar{\psi} \) momenta \(p, k - p \) must add to \(k \) of photon:

- **Black**: way off-shell, but big phase space
- **Blue**: less phase sp, but soft enhancement
- **Red**: both can be almost on-shell.

Call these regions Hard, **Soft**, and **Collinear**.
The P_\perp, P_+ plane:
Hard case

If all momentum components (transverse and longitudinal) are large, physics is simple: short distance-and-time correlators, PQCD works. Loop corrections are $\mathcal{O}(g^2)$ and should get large around $T \sim 2T_C$.

The challenge is the other two regions, where Pert. Thy. need not work as well.
Momentum-space vs Coordinate space

Momentum K lightlike \rightarrow lightlike X-separation:

$$f(K) = \int d^4X e^{-iK \cdot X} f(X)$$ involves all X

But q, \bar{q} start and end at same place:

q propagator

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {$J^\mu(0)$};
\node (b) at (4,0) {$J^\mu(X)$};
\draw[thick,->] (a) .. controls (2,1) and (2,-1) .. (b);
\end{tikzpicture}
\end{center}

q propagator

X determined by Fourier properties of P and $K - P$.

P small (or p_\perp small): X (or x_\perp) large.
K big, but X in $\int d^4X \exp(-iK \cdot X)$ also big. How?

Need phase
$\exp(-iK \cdot X)$ small. Occurs in narrow region.
Write t, z as
$X^- = (t - z)$,
$X^+ = (t + z)/2$.

Since $-K \cdot X = K^+X^- + K^-X^+$, K^+ big,
contribution is from region $X^- \simeq 0$ (Light Cone)
Lightcone correlators are Simple!

\[x^- = 0 \ (x = t) \] is “Lightcone” of photon

Separation lightlike if \(x_\perp = 0 \), spacelike if \(x_\perp \neq 0 \).

Causality \(\rightarrow \) only pre-existing correlators.

Unequal times usually means Complicated Dynamics.

Now Complicated dynamics Simple Thermodynamics!

- Energy-dependent: Just Thermal Masses!
- Energy-independent: Classical (3-D theory) correlators!
Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

$x^- \ll x_\perp \ll x^+ \ (1/T \ll 1/gT \ll 1/g^2 T)$

Consider *spacetime trajectory* of q, \bar{q}:

Need x_\perp-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540
Nontrivial analysis B. Zakharov, BDMPS, AMY

\[
\frac{dN_{\gamma}}{d^3k d^4x} = \frac{\alpha_{\text{EM}}}{\pi^2 k} \int_{-k/2}^{\infty} \frac{dp^+}{2\pi} n_f(k+p) \left[1 - n_f(p) \right] \frac{p^2 + (p+k)^2}{2[p(p+k)]^2} \times \lim_{x_\perp \to 0} 2 \text{Re} \partial_{x_\perp} f(x_\perp)
\]

\[
2 \nabla_\perp \delta^2(x_\perp) = \left[C(x_\perp) + \frac{ik}{2p^+(k+p^+)} (m_\infty^2 + \nabla_\perp^2 x_\perp) \right] f(x_\perp)
\]

\[f(x_\perp): \text{density matrix } |\psi_{P+K}\rangle \langle \gamma_K |\psi_P| \text{ or } |\psi_P \bar{\psi}_{K-P}\rangle \langle \gamma_K |\]

Eikonal evolution (Evolution in \(x^+\)) — \(x_\perp\) diffusion, AND

Wilson-loop interaction with medium \(C(x_\perp)\).
\(\mathcal{C}(x_{\perp}) \) is Euclidean!

\(\mathcal{C}(x_{\perp}) \): Wilson loop with space-separated lightlike lines. All points at spacelike or lightlike separation.

Soft contribution is **Euclidean**!!

Calculate it with *simple* perturbation theory (EQCD)

Calculate it on the lattice?!

NLO corrections to \(\mathcal{C}(x_{\perp}) \) computed. NNLO would be nonperturbative; possible via lattice

S. Caron-Huot, 0811.1603

Rummukainen, next talk
Consider correlator $G^<(x^0, x)$ with $x^z > |x^0|$. Fourier representation

$$G^<(x^0, x) = \int d\omega \int dp_z d^2p_\perp e^{i(x^z p^z + x_\perp \cdot p_\perp - \omega x^0)} G^<(\omega, p_z, p_\perp)$$

Use $G^<(\omega, p) = n_b(\omega)(G_R(\omega, p) - G_A(\omega, p))$ and define $\tilde{p}^z = p^z - (t/x^z)\omega$:

$$G^< = \int d\omega \int d\tilde{p}^z d^2p_\perp e^{i(x^z \tilde{p}^z + x_\perp \cdot p_\perp)} n_b(\omega) \left(G_R(\omega, \tilde{p}^z + \omega x^0/x^z, p_\perp) - G_A \right)$$

Perform ω integral: upper half-plane for G_R, lower for G_A, pick up poles from n_b:

$$G^<(x^0, x) = T \sum_{\omega_n = 2\pi nT} \int dp^z d^2p_\perp e^{i\mathbf{P} \cdot \mathbf{x}} G_E(\omega_n, p_z + i\omega_n(x^0/x^z), p_\perp)$$

Large separations: $n \neq 0$ exponentially small. $n = 0$ contrib. is x^0 independent!
Start with brute force: do the diagrams

Cut hard line: $p^- \simeq 0$, hard-line approx. p^+ independent.

Remaining integrals (using KMS) $(P, Q$ are resp. soft quark, gluon momenta)

$$
\int_{\sim g_T} d^2 p_\perp dp^+ \int_{\sim g_T} d^4 Q n_b(k^0) (G_R - G_A)
$$

G_R: retarded function of sum of all 4 diagrams’ guts.

Momentum p^+ is **null**. Any R/A function is analytic in upper/lower half plane for time-like or **null** p-variable.

Analytically continue in $p^+!!$

XQCD, Bern, 4 Aug. 2013: Seite 18 von 25
Deform p^+ contour into complex plane

Now $p^+ \gg p_\perp, Q$. (On mass-shell) Expand in $p^+ \gg p_\perp, Q$

$$G_R[4 \text{ diagrams}] = C_0(p^+)^0 + C_1(p^+)^{-1} + \ldots$$

C_0 is on-shell width, gives linear in p^+ divergence.
C_1 is on-shell dispersion correction, dp^+ / p^+ gives const.
Huh? Continuation possible because J^μ light-cone separated. And light-cone correlators are simple!

- C_0 term: Exactly the limit of collinear calculation when one quark momentum gets small. Already included.

- C_1 term: real dispersion-correction. Really simple:

$$\gamma\text{-rate} \propto \int \frac{d^2 p_\perp}{(2\pi)^2} \frac{m^2_\infty}{p_\perp^2 + m^2_\infty}$$

where m^2_∞ is dispersion correction. Has leading-order piece (hard modes) and subleading piece (dispersion correction of soft modes). both are known.
Remaining region—similar story. Null-separation physics, all condensates.

Summing it up: two corrections

Upward correction: more scattering at NLO.
Downward correction: fewer soft gluons, less dispersion corr.
Numerical conspiracy: effects nearly cancel [Accidental!!]

XQCD, Bern, 4 Aug. 2013: Seite 21 von 25
Main lesson

All the sticky IR physics shows up in a few condensates. Some are dispersion corrections – physically simple. Some are Euclidean – get directly on the lattice.

Bad news: $O(g)$ corrections big even for $\alpha_s = 0.1$ or $1000\ T_c$. Sort of expected that.

Good news: A few condensates. Determine them nonperturbatively, maybe get down to few T_c?

Get them on the lattice?
\(\mathcal{C}(x_\perp) \) on the lattice

Short side: \(x_\perp \) Wilson line \(\exp \int iA_\perp \cdot x_\perp \Rightarrow U_\perp U_\perp \ldots \)

Long side: \(x^+ \) Wilson line \(\exp \int i(A^z + A^0)dz \Rightarrow U_z e^{a\Phi} U_z e^{a\Phi} U_z \ldots \)

The latter is a new beast. Lattice renormalization properties?

Under investigation.

XQCD, Bern, 4 Aug. 2013: Seite 23 von 25
Other transport coefficients?

We want Baryon Diffusion D and (especially) shear η!
Both controlled by high-energy $E = \text{several} \; T$ particles
Lightlike correlators should again dominate:

\[T^{xy} \text{ disturbs a particle} \]

It induces another T^{xy}

NLO effects arise along particle’s lightlike trajectory.
Problem: transfer of stress to someone else

Lines are timelike separated

There are $O(g)$ corrections
Conclusions

• Photon production is worth computing
• “Enhanced” Pert. calculation – few T_C??
• NLO corrections to transport are large but simple
• Need a few correlators at lightlike-separated points
• Most can be extracted from the lattice
• Shear and diffusion will be harder. Stay tuned